第15章 イスラーム ︱近代との調和

14章アフリカ大陸へ〉 〈目次に戻る〉 〈16章インドへ

はじめに

 本章では、イスラームの影響が強い地域の歴史を、スポーツという視点から紹介する。特に焦点を当てるのは、中東地域と北アフリカであり、競技としては、馬術やレスリング、サッカーなどを取り上げる。各地域の政治や社会に加えて、ジェンダーにも注目して日常の暮らしにも目を向けたい。そうは言っても、イスラームとスポーツがどのように繋がるのか、そもそもイスラームが何なのか、今ひとつイメージがわかないという読者も多いことだろう。そこで、まずはイスラームについての基礎的な事項をおさえよう。

 はじめに確認しておきたいのは、イスラームは特定の地域を指す言葉ではないということだ。イスラームは宗教であり、しかも世界各地に信徒を抱える世界宗教だ。この点は、例えばキリスト教と並べるとわかりやすい。キリスト教が欧米のみならずアジアやアフリカ、もちろん日本にも広まっているように、イスラームの信者は世界中にいる。今からおよそ1400年前、7世紀のアラビア半島で興ったイスラームは、その後世界各地で信者を増やし、シリア、イラク、イランを含む中東地域、エジプトやモロッコなどの北アフリカはもちろんのこと、さらにサハラ砂漠以南のアフリカ大陸や中央アジア、東南アジア、中国にも広まった。中東にいくつかの聖地があるのは事実だが、イスラームの影響はそのはるか外側に広がる。イスラームを信仰する人のことを、ムスリム(女性の場合はムスリマ)と呼ぶ。今日では、ヨーロッパや北アメリカ、さらには日本にも多くのムスリムが暮らしている。東京の代々木には綺麗な礼拝堂があるし、素朴な礼拝施設は日本各地に数え切れないくらいたくさんある。現在日本で生活しているムスリムの人口は約11万人に及ぶという推計もある。イスラームというと中東地域を思い浮かべる読者が多いかもしれないが、ムスリムは中東地域以外にも多く暮らしているのだ(図1)。

図1.世界各地に広がるムスリムの社会 佐藤次高『イスラームを知る1 イスラーム:知の営み』山川出版社、2009年、4〜5頁

図1.世界各地に広がるムスリムの社会
佐藤次高『イスラームを知る1 イスラーム:知の営み』山川出版社、2009年、4〜5頁

 そしてこのことを端的に感じさせてくれるのが、実はスポーツだ。例えば、20世紀の代表的なボクサー、モハメド・アリ(図2)。1942年にアメリカ合衆国で生まれたこのヘビー級ボクサーは、元々カシアス・クレイという名前だった。圧倒的な試合運びや、「蝶のように舞い、蜂のように刺す」というセリフで有名だが、1964年に名前まで改めたように、イスラームに改宗したこともよく知られている。例えば、アリはアラビア半島のカタールを訪れたことがあり、その時の様子を紹介した特別展示が、2016年にアリが亡くなった後、カタールの首都ドーハにあるイスラーム美術博物館で開催された。他にも、日本の大相撲では、エジプト出身でムスリムとしても知られる大砂嵐関が最近まで活躍していた。

図2.モハメド・アリ
Dana R. Barnes, Notable Sports Figures, vol. 1, Detroit, MI: Gale, 2004, p.35

 またその一方で、中東地域ではユダヤ教、キリスト教、ゾロアスター教など他の宗教の影響も強い。つまり、イスラームは中東地域に固有のものでもなければ、中東地域にはムスリムしかいないというわけでもないのだ。「イスラーム=中東」ではないという点を、ここで改めて強調したい。その上で、本章では、特にイスラームの影響がわかりやすい地域として、アラビア半島やイランを含む中東地域、エジプトなどの北アフリカに焦点を当てよう。スポーツとしては、前近代から続く伝統競技と近代スポーツに区分した上で、まずは前者から見ていこう。

1.ムスリムの伝統競技

 今からおよそ1400年前、7世紀前半のアラビア半島で、アラブの預言者ムハンマドがイスラームを創唱した。イスラームの影響が強い社会、つまりムスリムの社会において、ムハンマドの時代から、今日私たちが「スポーツ」と呼ぶものに通じる伝統競技がいくつか伝えられている。ここでは、その代表的な競技を紹介しよう。

 まず面白いのは、預言者ムハンマド自身が妻と競ったと言われる徒競走である。ムハンマドは10人を超える妻をめとったが、その中でも晩年特に愛したのがアーイシャであった。アーイシャは、幼くしてムハンマドの妻となり、ムハンマドに連れ添い、ムハンマドの最期を看取った。なお、アーイシャの父は、ムハンマドの死後に信徒の指導者(初代正統カリフ)となったことで知られている。さてアーイシャだが、生前のムハンマドと、2回、徒競走をしたと言い伝えられている。何でも、1度目はアーイシャが勝ち、2度目の対戦ではふくよかになったアーイシャにムハンマドが勝ったのだという。ムハンマドとアーイシャの人柄やふたりの仲むつまじい関係が垣間見えるようではないか。この言い伝えは、女性のスポーツ参加に関連して、今日でも言及されることがある。

 また、預言者ムハンマドが関わった競技としてもうひとつ挙げられるのは、競馬である。ある言い伝えによると、ムハンマドは競馬を開催したことがあり、勝った騎手には順位に応じて布や現金、ムチなどを賞として与えたという。今日のアラビア半島でも、競馬や馬術は愛されている。例えば、ドバイの首長家であるマクトゥーム家は、多くの競走馬を所有していることでも知られている。

 他にも、弓術、ポロ、水泳、ボートレースなど、前近代からムスリムは多くの競技に親しんできた。こうして並べてみて気づくのは、ムスリムも体を使って遊び、張り合いながらそれぞれの社会の中で生きてきたということである。ごく当たり前の事実だが、一般にイスラームというと難解で神秘的なイメージがあるので、ムスリムの社会の身体的な側面に光を当てることには意味があるだろう。

図3.ズールハーネ ユネスコのウェブサイト<a href=
https://www.ich.unesco.org/en/RL/pahlevani-and-zoorkhanei-rituals-00378
(2018年3月7日閲覧)" width="640" height="424" srcset="https://www.isshikipub.co.jp/wp-content/uploads/2018/09/unnamed-file-4-1.jpg 2500w, https://www.isshikipub.co.jp/wp-content/uploads/2018/09/unnamed-file-4-1-300x199.jpg 300w, https://www.isshikipub.co.jp/wp-content/uploads/2018/09/unnamed-file-4-1-768x508.jpg 768w, https://www.isshikipub.co.jp/wp-content/uploads/2018/09/unnamed-file-4-1-1024x678.jpg 1024w, https://www.isshikipub.co.jp/wp-content/uploads/2018/09/unnamed-file-4-1-1568x1038.jpg 1568w" sizes="(max-width: 640px) 100vw, 640px" />

図3.ズールハーネ ユネスコのウェブサイト

(2018年3月7日閲覧)

 そして、こうした中でも忘れてはならないのがレスリングである。特にイランではレスリングが盛んで、「ズールハーネ」と呼ばれるジムで競技されてきた。ズールハーネとは、ペルシア語で「力の家」を意味するドーム型の施設である。建物の内部に入ると、半地下に八角形の床があり、この上で、トレーニングと競技が行なわれる(図3)。ムスリムでない者、女性、思春期前の男子は、伝統的に入場が禁じられていた。トレーニングの際には、軽快な太鼓に合わせて、腕立て伏せを行なったり、棍棒のように巨大な木製のアレイを持ち上げてぐるぐると廻したりして鍛錬をする。こうしたトレーニングに加えて、組み合ってレスリングのように格闘することも盛んだった。近年の研究によると、競技者の職業は様々で、例えば19世紀のズールハーネを調査したところ、館長やプロの競技者の他に、職人、商人、軍人、農民、貴族、教師、さらには詩人などもいたという。職業や社会的な立場を超えて格闘技に汗を流す男たちの姿を想像すると、ある種の清々しさを感じずにはいられない。そしてズールハーネでは侠気が重んじられ、その絆は強く、20世紀にはズールハーネが関わって成功したクーデターもあった。

 ここで、モサッデク(モサッデグ、モサデグ)という名前を思い出して欲しい。20世紀に活躍したイランの政治家と言えば、ピンとくる読者もいるだろう。1951年、モサッデクはイランの首相に就任し、イギリス資本の石油会社が持っていたイラン国内の資産を国有化した。冷戦下、モサッデクによる石油国有化は、それまで西側列強と国際石油資本がタッグを組んで産油国に押し付けていた国際秩序に対する挑戦とみなされ、大きな波乱を呼んだ。そして遂に1953年、英米の諜報機関の支援を受けたイラン国王はクーデターを決行し、モサッデクを失脚させるにいたる。このクーデターに際して、国王側についてモサッデクを失脚に追い込んだのが、ズールハーネに拠点を置いた任侠集団だった。レスリングと国際政治、そしてナショナリズムが意外な形で交錯した出来事である。愛国心が強いことで知られるズールハーネの任侠集団が、資源ナショナリズムの先鋒たるモサッデクと真っ向から対立したというのだから、歴史は一筋縄ではいかない。このようにズールハーネの歴史はイランのナショナリズムとも複雑に絡み合っており、現在ではズールハーネに関わる慣習はユネスコの無形文化遺産に登録されている。

 また、格闘技が盛んなのはイランに限ったことではない。ムスリムが多いトルコや中央アジアも、同じようにレスリングが歴史的に盛んな地域である。近年でもこうした地域はレスリングや重量挙げで世界的な選手を輩出している。中東、北アフリカ、中央アジアにおける格闘技の伝統が今日までどのように引き継がれているか、まだまだ研究する余地がある興味深いテーマである。

2.社会に根づく近代スポーツ︱サッカー

 さて、前近代からムスリムの社会で続く伝統競技の例が馬術やレスリングだとすると、近代スポーツの代表格は何といってもサッカーだ。他にも各地で様々なスポーツが親しまれているし、日本で想像しやすいもので言えば空手も人気だ。ドーハやアブダビの海沿いの道を歩けば、ランニングを楽しむ市民の姿を見かけることも珍しくない。ペルシア湾岸地域にはインドやパキスタンからの出稼ぎ労働者も多く、草クリケットをしている若い男性たちの姿を見かけることもある。しかし、中東や北アフリカの街を歩いていて一番よく目にするのは、ボールを蹴っている子どもたちだ。カフェに入れば、衛星放送のサッカーを観ながらお茶や水タバコに興じるおじさんたちがいる。サッカーの人気は圧倒的だ。そしてサッカーの歩みは、この地域の近代の歴史とも密接に関わっている。

 ここで、中東と北アフリカが体験した近代がどのような時代だったのかを見ておこう。18世紀末から20世紀にかけてムスリムの社会が抱えた大きな課題は、欧米の優位性にどのように対抗するかという問題だった。圧倒的な軍事力を背景にした欧米の植民地主義が、ムスリムの社会の政治、経済、社会、さらには文化にまで侵食してくる。このことに対して、どのように立ち向かうか? これは、似たような時期に日本を含む世界の多くの地域が抱えた悩みでもあり、今日に続く問題でもある。そしてこの難題に直面したムスリムの社会は、大きく分けてふたつの方向から解決策を模索してきた。ひとつは、イスラームの古典的な思想に立ち返って、自分たちの世界を本来あるべき姿に立て直そうという方向性である。もうひとつは、欧米の強さの秘訣、すなわち近代の科学技術、社会システム、文化、思想を学び、取り入れることで、欧米と肩を並べようという方向性である。もちろん個々の思想をたどるとこれほど単純ではないが、あえて模式的に表せば、このふたつの極の間でムスリムの社会は葛藤を続けてきたと言えるだろう。そして、近代スポーツの普及は、後者、すなわち欧米の近代から学べるものは学びながら欧米に対抗しようという姿勢のひとつのあらわれとして理解することができる。本節では、近代スポーツ、とりわけサッカーの普及と発展に注目しながら、ムスリムの社会が葛藤してきた姿を見ていこう。例に挙げるのは、エジプトである。

 18世紀末、エジプトは、ナポレオンによる軍事遠征にみまわれる。ナポレオン率いるフランス軍がエジプトを占領したのは一時のことではあったものの、ヨーロッパの衝撃は強烈なものとしてエジプトの社会に記憶された。その後、紆余曲折を経てヨーロッパの影響力は高まり、19世紀末からはエジプトはイギリスの事実上の支配下に置かれる。サッカーは、こうして侵出してきたイギリスによってエジプトに伝えられた。

 サッカーがエジプトに持ち込まれた経路の詳細についてはいくつか説があるが、まとめると、エジプトに滞在していたイギリス人がサッカーをしていて、それが何らかの機会にエジプト人に伝わったようである。20世紀初頭には、現在まで続く名門チームも創設された。1907年に、カイロでアハリーというチームが結成されたのを皮切りに、1911年には、後にザマーレクと改称されることになる有名チームが作られた。アハリーとザマーレクは、ともに熱狂的なファンで知られ、日本のプロ野球でいう巨人と阪神のように今日まで続くライバルチームである。さらに、1920年には、スエズ運河で有名なポートサイードで、マスリーが創設された。マスリーのチーム名は「エジプト」に由来し、その名の通りエジプト人選手だけでチームが構成された。

 ここで重要なのは、イギリス人とエジプト人、それぞれの立場によってサッカーの持つ意味合いが異なっていたということである。エジプトサッカー史に関する最近の研究は、身体運動たるサッカーが持った社会的な意味を次のように分析している。すなわち、一方のイギリス人にとってサッカーとは、自分たちの優れた文明をエジプトに浸透させるために好都合な道具であった。他方、エジプト人は、こうしたイギリス人のやり方を逆手にとり、植民地主義者に対抗する手段としてサッカーを競技し、観戦し、楽しんだ。以下、最近の研究に依拠しながら、エジプトのサッカーの発展を見ていこう。

 第1次世界大戦の戦火の中、中東に横たわる巨大なオスマン帝国をイギリス、フランスなどが密かに切り分けようと画策していた頃、エジプトのサッカー界は新たな局面に入る。1916年、イギリス人主体のサッカーチームとエジプト人主体のチームが参加する優勝杯争奪戦が開催されたのだ。ちなみにこの時に参加したアハリーのチーム名は、アラビア語で「国民」に由来する。こうしてサッカーでイギリスへの対抗心が醸成される中、ピッチの外ではイギリスの支配をはね返そうとする動きがさらに加速する。1919年、イギリスに対して激しい独立要求が出されるのだ。その後エジプトは形式的に独立するが、これでは十分でないとする勢力はイギリスに対して圧力をかけ続けた。こうした反英運動の機運は、サッカー界にさらなる情熱をもたらす。

 とくに画期となったのは、1924年のパリ五輪と1928年のアムステルダム五輪である。ふたつのオリンピックにエジプトはサッカーの代表チームを送った。特にエジプト人を勇気付けたのは、パリ五輪でフランスとハンガリーからエジプトが金星を奪ったことである。エジプトの新聞は、異例の扱いで紙面を大きく割いて、ヨーロッパを打倒したサッカーの代表チームの活躍を報じている。当時、こうした新聞を直接読める層は知識人などに限定されていたが、報道の内容は、街の至る所に見られる井戸端会議を通じて他の人たちにも拡散されていった。カフェや公衆浴場でエジプト代表チームの勝利を聞いた人びとの興奮は、どれほどのものだっただろうか。植民地主義に蹂躙され続けてきたエジプトの市民が、代表チームの国際的な活躍を聞いて溜飲を下げる様子が想像できる。

 今日にいたっても、エジプトのサッカー熱は衰えるところを知らない。20世紀初頭に創設されたアハリー、ザマーレク、マスリーといった古豪の人気は相変わらずだ。2012年、「アラブの春」の政治変動にエジプト社会が揺れていた頃、アハリー対マスリーの試合では過熱したファンが乱闘になり、多数の死者を出すという不幸な事件もあった。

アルジェリア、トルコ、イランなどでも、サッカーは社会にとって重要な意味を持つものとして歴史を刻んできた。サッカーの発展をそれぞれの地域や国家の近代史の中に位置付けようとする研究が近年あらわれているのも、そのためだろう。中東と北アフリカのほぼ全域でサッカーは確固たる地位を占めているのだ。しかも、ヨーロッパなど他地域で競技されているサッカーに対する関心も高い。石油や天然ガスに恵まれて経済的に発展しているペルシア湾岸諸国の中には、豊富な資金を活かしてヨーロッパのトップリーグのスポンサーとなっている企業もある。例えば、アラブ首長国連邦のエミレーツ航空は、イギリスの名門チーム、アーセナルのスポンサーだ。スペインのバルセローナのユニフォームにカタール航空と大きく書かれていたことがあるのを見た読者も多いだろう。また、中東や北アフリカとヨーロッパのサッカーは、人の移動の歴史という意味でも深くつながっている。フランスの伝説的なサッカー選手ジネディーヌ・ジダンは、アルジェリアからの移民の家系の出身として知られている。このように、ムスリムの社会におけるサッカーは、地域社会に根付いて熱い支持を得ているだけでなく、常にヨーロッパなど他の社会との重要な接点であり続けてきた。

3.スポーツをする女性たち

 ここまで、預言者ムハンマドの時代から近現代までの伝統競技や近代スポーツの発展を概観してきた。ムスリムもスポーツを楽しんできただけでなく、スポーツの持つ意味もそれぞれの時代や社会状況によって変わってきたということがわかった。では、スポーツをめぐる最近の状況はどのようになっているのだろうか? 本節では、各地域や人物の個別性に光を当てながら見ていくことにしよう。イスラームで信奉する神はただひとつだが、その信仰を生活でどのように実践するかは様々であり、ムスリムの社会は実に多様で、とても十把一絡げにはできないからだ。こうしたムスリムの多様性を感じ取るのにうってつけの視角として、ジェンダーに注目しよう。ジェンダーは、社会全体に関わる問題でありながら、同時に、その捉え方、実践の仕方が人によって大きく異なるからだ。

 イスラームとジェンダーと言うと、イスラームは女性を抑圧する宗教だという印象を持っている読者もいるかもしれない。実際、そのような立場からの発言を耳にすることもある。しかし、事はそう単純ではない。イスラームの聖典クルアーン(コーラン)は男女を明確に区別しているが、男女を区別して教えを説くということ自体は他の宗教にもみられる。また、クルアーンはたしかに女性にある種のつつましさを求めているが、その教義を日々の暮らしの中でどのように実践するかについては様々な解釈がある。まして近代スポーツとの関係は、イスラームの長い歴史からすればごく最近のものだ。ムスリマ(イスラームを信仰する女性)が近代スポーツを競技して良いか、競技して良いとすればどのように参加するのが望ましいのかといった問題は、当然、クルアーンには直接的に書かれてはいない。聖典や言い伝え、色々な慣行を総合的に勘案してどのように解釈すべきか、社会や個人によって考え方に大きな幅があるのだ。以下では、この幅、ムスリムの社会の多様性を感じさせてくれる対照的な例を見ていこう。

図4.ハシーバ・ブルメルカ gettyimages

図4.ハシーバ・ブルメルカ gettyimages

 まずは、北アフリカの女性陸上選手、ハシーバ・ブルメルカ(ハシバ・ブールメルカ)である(図4)。ブルメルカは、アルジェリア出身で、1990年代に活躍した。専門は中距離走。1991年に東京で開催された世界選手権において、1500メートル走で優勝し、一躍世界の表舞台に躍り出た。この競技の世界選手権での金メダルは、アルジェリア人女性としても、アフリカ人女性としても、史上初の快挙であると報じられた。そして何より圧巻だったのは、1992年の夏のオリンピック。祖国アルジェリアが政治不安から内戦へと突入する中、地中海を挟んだ対岸、バルセローナで開催されたオリンピックの決勝で、ブルメルカは優勝した。しかも、2位以下を大きく引き離しての圧勝(図4)。鍛え抜かれた肉体でトラックを精悍に駆け抜けて、勝利の雄叫びをあげ、アルジェリア国旗を胸に抱きしめて喜びに浸るその姿は、世界中に放映された。そしてこの決勝のレースは、その間彼女に寄せられていた批判を退けようとする強い意志を感じさせるものでもあった。というのも、ブルメルカは他の国の女性ランナーと同じようにランニングに半ズボンという姿でそれまで競技をしており、肌の露出の多い格好はつつしむべきだと考える一部のムスリムの反発を買っていたのである。こうした批判はあまりに強く、ブルメルカはオリンピックの前のトレーニングをアルジェリアで行なうことを断念し、ヨーロッパに行かざるを得なかったほどである。バルセローナ五輪での彼女の勇姿は、アルジェリアに史上初の金メダルをもたらしただけでなく、ムスリマとしてのひとつの生き方を訴えるものでもあったのだ。

図5.ルケイヤ・ガスラ Sports Illustratedのウェブサイト<a href=
Beijing Games: Day 12
News from around the web.
(2018年3月7日閲覧)" width="666" height="525" srcset="https://www.isshikipub.co.jp/wp-content/uploads/2018/09/unnamed-file-5-1.jpg 666w, https://www.isshikipub.co.jp/wp-content/uploads/2018/09/unnamed-file-5-1-300x236.jpg 300w" sizes="(max-width: 666px) 100vw, 666px" />

図5.ルケイヤ・ガスラ
Sports Illustratedのウェブサイト

(2018年3月7日閲覧)

 このようにブルメルカが追求した女性らしさ、つまり世界の他の女性アスリートと同じ格好で競技をしようという姿勢は、比較的理解しやすいと感じる読者が多いのではないかと思う。これに対して、別のやり方でイスラームへの信仰と近代スポーツとの調和を追求したのが、ルケイヤ・ガスラだ(図5)。ガスラは、ペルシア湾に浮かぶ島国、バーレーン出身の女性で、2000年代に陸上選手として活躍した。専門は短距離走。2004年のアテネ五輪に出場し、2006年にはアジア大会の200メートル走で優勝している。ブルメルカが他の選手と同じ格好で走ったのに対し、ガスラはイスラームとの調和を重視しているのが一目でわかる姿で競技をした。頭から足まで、顔と手以外はスポーツウエアで覆っていたのである。

 ここで、女性の解放か抑圧かという単純な構図の中にふたりを対置すると、重要な点を見過ごすことになる。ブルメルカもガスラも、それぞれの規範、理想、信仰心に従って、陸上競技を追求したという点では同じだからだ。また、こうした個人間の違いに加えて、国家や地域、社会によっても女性のスポーツ参加のあり方は異なる。ブルメルカやガスラのように世界の表舞台でスポーツに汗を流す女性がいる一方で、スポーツをする機会を全く与えられないムスリマもいる。例えばサウジアラビアでは、体育が女子教育に含まれていない。近年では女子学生にも体育を教えようという動きもあるが、今後の展開はまだ不透明である。

 イスラームを信仰する者も、他の人びとと同様、からだを動かすことに喜びを感じ、競技に打ち込んできた。19世紀に近代スポーツが成立してからもそれは変わらず、サッカーに代表されるような近代スポーツはムスリムの社会に受け入れられている。他方で、イスラームの長い歴史からすると近代スポーツはごく最近になって登場したものであり、しかも元々はヨーロッパの社会的な文脈の中で発祥したものだということも事実だ。イスラームの世界観の中で近代スポーツがどのように消化されるべきかについては、それぞれの社会や個々のムスリムの間でも様々な考え方がある。この点を理解するためにあえて日本社会の例を挙げると、例えば柔道が「道」として成立しつつも近代スポーツの規範との調和を図るべく葛藤してきたように、ムスリムの社会も近代スポーツとの付き合い方を現在進行形で模索しているのだ。

14章アフリカ大陸へ〉 〈目次に戻る〉 〈16章インドへ

ミエリン鞘はとも呼ばれ、軸索に巻き付いて絶縁体として働く構造である。これにより神経パルスはミエリン鞘の間隙を跳躍的に伝わる(跳躍伝導)ことで神経伝達が高速になる。ミエリン鞘は末梢神経系の神経ではシュワン細胞、中枢神経系ではオリゴデンドロサイトから構成される。

脳の中にある空洞のこと。脳脊髄液で満たされている。脊髄にあるものは中心管と呼ばれる。

神経堤細胞は脊椎動物の発生時に見られる神経管に隣接した組織。頭部では神経、骨、軟骨、甲状腺、眼、結合組織などの一部に分化する。

細胞の生体膜(細胞膜や内膜など)にある膜貫通タンパク質の一種で、特定のイオンを選択的に通過させる孔をつくるものを総称してチャネルと呼ぶ。筒状の構造をしていて、イオンチャネルタンパク質が刺激を受けると筒の孔が開き、ナトリウムやカルシウムなどのイオンを通過させることで、細胞膜で厳密に区切られた細胞の内外のイオンの行き来を制御している。刺激の受け方は種類によって多様で、cGMPが結合すると筒の穴が開くものをcGMP依存性イオンチャネルと呼ぶ。TRPチャネルも複数のファミリーからなるイオンチャネルの一群であり、非選択性の陽イオンチャネルである。発見された際に用いられた活性化因子の頭文字や構造的特徴から、A (Ankyrin), C (canonical), M (melastatin), ML (mucolipin), N (no mechanoreceptor), P (polycystin), V(vanilloid)の7つのサブファミリーに分類されている。TRPは、細胞内や細胞外の様々な刺激によって活性化してセンサーとして働いたり、シグナルを変換したり増幅したりするトランスデューサーとしての機能も併せ持つ。温度センサーやトウガラシに含まれるカプサイシンのセンサーとしても機能していることが知られている。

任意の遺伝子の転写産物(mRNA)の相同な2本鎖RNAを人工的に合成し生物体内に導入することで、2本鎖RNAが相同部分を切断して遺伝子の発現を抑制する手法。2006年には、この手法の功績者がノーベル生理・医学賞を受賞している。

様々な動物種間で塩基配列やアミノ酸配列を比較することによって、類似性や相違を明らかにする手法。この解析によって動物種間の近縁関係や進化の過程を予測することが可能になる。

発生過程で神経管を裏打ちする中胚葉組織であり、頭索類・尾索類では背骨のような支持組織としての役割を持つ。脊椎動物では運動ニューロンの分化を誘導するなど発生学的役割を持つ

魚類に顕著にみられる鰓のスリットで、哺乳類では発生の初期にはみられる。発生が進むと複雑な形態形成変化が起き、消失するが、外耳孔などは鰓裂の名残ということができる。

動物の初期発生において最初の形態形成運動として原腸陥入が起こる。原腸は消化管に分化する。この原腸陥入によって生じる「孔」を原口と呼ぶが、これが将来の動物の体の口になるのが前口動物であり、肛門になるのが後口動物である。半索動物、脊索動物は後口動物である。

ナマコの幼生のことをオーリクラリア幼生と呼ぶが、ウニのプルテウス幼生、ヒトデのビピンナリア幼生、ギボシムシのトルナリア幼生など、形態的共通性をもつ幼生全体をまとめてオーリクラリア(型)幼生と呼ぶ。今日ではディプルールラ型幼生という呼び方が広く使われている。この説はガルスタングが1928年に提唱した。その時代にはオーリクラリアという用語が使われたため(ディプリュールラ説ではなく)オーリクラリア説と呼ばれている。

Hox遺伝子はショウジョウバエで発見されたホメオティック遺伝子の相同遺伝子である。無脊椎動物のゲノムには基本的に1つのHoxクラスターがあり、脊椎動物のゲノムには4つのHoxクラスターがある。Hoxb1は4つあるクラスターのうちのBクラスターに属する1番目のHox遺伝子という意味である。

脊椎動物胚の後脳領域には頭尾軸にそった分節性(等間隔の仕切り)がみられる。この各分節をロンボメアと呼び、図14に示すように7番目までは形態的に明瞭に観察できる。

脊椎動物のゲノムにはふたつか3つのIsletが存在する。Isletは脳幹(延髄、橋、中脳)の運動性脳神経核に発現して、運動ニューロンの分化に関与している。

感桿型では光刺激はホスホリパーゼCとイノシトールリン酸経路を活性化させる。繊毛型ではホスホジエステラーゼによる環状GMPの代謝が関与している。

気嚢による換気システムは獣脚類と呼ばれる恐竜から鳥類に至る系統で段階的に進化していったと考えられる。

このような特異な形態は胚発生期には見られず、生後に発達する。その過程は頭骨に見られる「テレスコーピング現象」と並行して進む。

1. Sato, T. (1986) A brood parasitic catfish of mouthbrooding cichlid fishes in Lake Tanganyika. Nature 323: 58-59.

2. Taborsky, M. et al. (1981) Helpers in fish. Behav. Ecol. Sociobiol. 8: 143–145.

3. Hori, M. (1993) Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260: 216-219.

4. Meyer, A. et al. (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550-553.

5. Salzburger, W. et al. (2005) Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5: 17.

6. Verheyen, E. et al. (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325-329.

7. Seehausen, O. et al. (2003) Nuclear markers reveal unexpected genetic variation and a Congolese-Nilotic origin of the Lake Victoria cichlid species flock. Proc. Biol. Sci. 270: 129-137.

8. Meier, J.I. et al. (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8: 14363.

9. Joyce, D. A. et al. (2005) An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435: 90-95.

10. Kocher, T. D. et al. (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol. Phylogenet. Evol. 2:158-165.

31. Janvier, P. (2015) Facts and fancies about early fossil chordates and vertebrates. Nature, 520(7548), 483.

卵や精子、その元となる始原生殖細胞などを指し、子孫に遺伝情報が引き継がれる細胞そのものである。

卵や精子を作る減数分裂において、母由来の染色体と父由来の染色体が対合したときに、同じ領域がランダムに入れ替わる(組み換えられる)。つまり、我々の”配偶子の”染色体は、父親と母親由来の染色体がモザイク状に入り交じったものなのである(体細胞の染色体は免疫グロブリンなどの一部の領域を除いて基本的には均一なものと考えられている)。

 タンパク質にコードされる遺伝情報をもつ塩基配列。狭義にはゲノムDNAのうち、mRNAに転写され、タンパク質になる部分。近年は、タンパク質に翻訳されないものの、機能をもつtRNA、rRNAやノンコーディングRNAなども遺伝子の中に含められるようになっている。本書では、特に注意書きのない限り、タンパク質の元となるmRNAになる部分を遺伝子、と呼ぶ。

 では、その転写因子はなにが発現させるのか、というと、やはり別の転写因子である。卵の段階から、母親からmRNAとして最初期に発現する遺伝子は受け取っているので(母性RNA)、発生の最初期に使う転写因子を含む遺伝子群に関しては、転写の必要がないのである。その後、発生、分化が進んでいくと、それぞれの細胞集団に必要な転写因子が発現し、実際に機能をもつ遺伝子の転写を促す。

遺伝子は、核酸配列の連続した3塩基(コドンと呼ばれる)が1アミノ酸に対応し、順々にペプチド結合で繋げられてタンパク質となる。3つの塩基は43=64通りになるが、アミノ酸の数は20個、stopコドンを含めても21種類しかない。したがって、同じアミノ酸をコードするコドンは複数あり、たとえ変異が入ってもアミノ酸は変わらないことがある。これを同義置換と呼ぶ。一方で、変異によってコードするアミノ酸が変わってしまう置換を非同義置換と呼ぶ。

 ふたつの系統が祖先を共通にした最後の年代。本章では、近年の分岐年代推定を利用して作成された系統樹(当該文献[9]のFig.1を参照)からおよその年代を読み取り、記入している。

 アフリカツメガエルや、コイ科、サケ目など、進化上の随所でも全ゲノム重複が起こっている。

 最もよく知られている放射性同位元素による年代測定は、放射性炭素年代測定である。炭素12Cは紫外線や宇宙線によって、空気中では一部(1/1012)が常に14Cに変換されている。つまり、大気中ではいつの時代も1兆個の炭素原子のうちひとつが14C、残りが12Cという割合なのである(太陽活動の変化などにより若干のブレはある)。しかし一旦生物の体内に炭素が取り込まれ、そしてその生物が死に、地中に埋まってしまえば、もう宇宙線も紫外線も当たらないので、14Cへの変換は起こらない。ここで14Cは放射性同位元素であることに注目したい。14Cは約5730年で半分が崩壊し12Cに変換される。したがって、14Cの比率でいつその物質が地中に埋まったのかがわかるのである(文献7)。

 ただし、この放射性炭素年代測定では、14Cの検出限界の関係で、せいぜい6万年が限界である。それより昔は火山岩に含まれる物質の、やはり放射性崩壊の半減期を元に推定される。例えば、K-Ar法では、40Kが40Arに13億年の半減期で放射性崩壊することを利用する。溶岩からできたての火山岩か、あるいは何億年も経ったものかを調べることができる。40Kは岩石中に元々大量に存在するため、差異を検出することは不可能だが、40Ar(常温で気体)は大気中には微量しか含まれないため、岩石中に封入された気体の中の40Arの含有率を計測することにより、その岩石の古さがわかる。当然、40Arの率が高い物が古い岩石である。このように、複数の放射性元素の崩壊の半減期から地質年代というのは推定される。

 南米にもごく少数ながら有袋類が現存しており、これらのゲノム解析・比較から、オーストラリア・南米で現生の有袋類の共通祖先は、実は南米で生まれ、当時陸続きだった南極大陸を経て、オーストラリアにいたったと考えられている。

 世界で最も臭いといわれているシュールストレミングをネットで取り寄せて購入したとき、人々は逃げるどころか、わざわざ悶絶するために集まってきた。いい匂いの物を取り寄せても20人もの人数は集まるとは思えず、怖い物見たさという悪趣味な好奇心はたいしたものである。無論、取り寄せた私も例外ではない。ちなみに、シュールストレミングはひとかけらをクラッカーの上に載せるくらいの食べ方なら悪くない気もする。

このふたつの硬骨の作られ方について、第3章に詳述があるので参照。

 ガノイン鱗には我々の歯のエナメル質を作る遺伝子と相同な遺伝子が発現しており(文献18)、イメージとしては歯で身体を覆われているようなもので、当然極めて強固である。

 遺伝子にはその由来によっていくつかの異なる呼び名がある。オーソログとは、共通祖先がもつある遺伝子Aが、種分化によって2種以上の生物に受け継がれた時、受け継がれた遺伝子たちをオーソログと呼ぶ。パラログとは、遺伝子重複によって生じたふたつ以上の遺伝子を指す。最近では大野乾氏の功績をたたえ、ゲノム重複によって生じたパラログで現存するものを特にオオノログOhnologと呼ぶ。

 異化と同化……この2種類の化学反応によって生命活動は維持されている。異化は物質を分解してエネルギーを取り出す代謝経路、同化はエネルギーを使って必要な物質を体の中で作り出す代謝経路。

 アデノシン三リン酸の略。生体内のエネルギー通貨として、様々な化学反応に用いられている。

 組織中の核酸分子(ここでは特定の遺伝子から転写されたmRNAを指す)の分布を検出する手法。調べたい遺伝子の塩基配列を元に、そのmRNAに特異的に結合する分子を設計・合成することで特異度の高い検出が可能となっている。

 通常の生物の核ゲノムはそれぞれの両親に由来する染色体が2本1セット存在し(ディプロイド)、その染色体間で組み替えが起こるため遺伝的な由来を辿る作業がしばしば煩雑になる。しかしミトコンドリアは母親由来であるため(ハプロイド)、そのゲノムを利用することで比較的簡便に遺伝的な類縁関係を遡ることが可能となる。

 増幅断片長多型:制限酵素で切断したゲノムDNA断片をPCRにより増幅し、断片の長さの違いを網羅的に検出比較する方法。この断片長の違いを種間の類縁関係の推定に使用することが多い。

 sexual conflict。ある形質が片方の性にとっては有利だが、もう片方の性にとっては不利な場合にオスメス間で生じる対立。

 次世代シーケンサーを利用して、各組織に発現する遺伝子の種類や量を網羅的かつ定量的に推定する解析方法。

 真核生物のゲノムに散在する反復配列のうち、一度DNAからRNAに転写され、その後に逆転写酵素の働きでcDNAとなってからゲノム中の別の座位に組み込まれるものを指す。数多くのレトロポゾンが存在しており、例えばヒトゲノムは約40%がレトロポゾンによって占められている。

 太陽光には連続したことなる波長成分の光が含まれているが、その波長によってエネルギーが異なるため、水中に到達する波長成分の割合が深さによって異なることがわかっている。特に濁ったビクトリア湖のような水環境では浅場の方が短波長である青色光の成分が多く、深場では長波長の黄色〜赤色の成分が多いことがわかっている。

 タンパク質をコードするDNA配列上の塩基置換にはアミノ酸の置換を伴う非同義置換と、伴わない同義置換がある。一般に、同義置換は生体に影響を及ぼさないため中立であるが、非同義置換は生体にとって不利であることが多い。ただしタンパク質の機能変化が個体にとって有利な場合は非同義置換の割合が上昇することが知られており、それを正の自然選択と呼ぶ。同義置換と非同義置換の割合を統計学的に比較する方法がある。詳細については第7章およびコラム「適応進化に関わる候補遺伝子や候補領域を絞り込むアプローチ」を参照。

   発生初期の胚の一部の細胞群から作られ、生殖細胞を含む様々な組織に分化可能な性質(多能性)を有する細胞株。英語名(embryonic stem cells)の頭文字をとって、ES細胞と呼ばれることも多い。

 変異体を元になった親系統と交配すること。TILLING変異体に関しては変異以外の部分を親系統由来のゲノムに置換するために行う。1回の交配で全体の50%の領域が置換されるため、90%以上を置換するためには最低4回の、99%以上を置換するためには最低7回の戻し交配が必要である。

 タンパク質の二次構造のうち代表的なモチーフのひとつ。水素結合により形成されたらせん状の形である。

 Francis Crickが1958年に提唱した、遺伝情報がDNA→(転写)→mRNA→(翻訳)→タンパク質、という流れで伝わるという概念のこと。分子生物学の基本となる極めて重要な概念である。

 ヒメダカの原因遺伝子としてだけでなく、ヒトの先天性白皮症(つまりアルビノ)やホワイトタイガーの原因遺伝子としても知られる。水素イオンを運ぶトランスポーターをコードすることがわかっているが、その黒色素産生(メラニン合成)における機能は未解明な点が多い。

 相同組換えの鋳型となる外来DNA断片のこと。通常、導入したい配列(GFP遺伝子や特定の塩基置換など)の上流・下流それぞれに、導入したいゲノム領域と相同な配列(相同アームと呼ばれる)を持ったDNA断片である。

 RNAポリメラーゼが結合し、RNAを転写するのに必要最小限の遺伝子上流配列。通常、単独では下流の遺伝子は転写されないが、周辺に転写活性化領域(エンハンサーなど)が存在すると、その影響を受けて下流に存在する遺伝子が転写される。

 オオシモフリエダシャクの「工業暗化」の例を考えるとわかりやすい。これは、産業革命以降のイギリスで、暗化型と呼ばれるより黒い個体の割合が多くなったとされる例である。この蛾は、自然が多い地域では淡色型が目立ちにくく、鳥に捕食されづらかったが、すすで黒くなった木が多い工業地帯では、より黒い暗化型のほうが目立ちにくく、生き残りやすかった。この場合、仮に蛾の色をより黒くするアミノ酸変異が生じたとすると、そのアミノ酸変異は工業地帯で生存に有利で、固定されやすいだろう。ちなみに、近年、具体的にどんな遺伝的変異がこの工業暗化に関わっていたのかが詳細に解析されつつある。

 SWS = short wave sensitive opsin、つまり短波長の光に感受性をもつオプシンのサブタイプ。

 第4章にも記載されているように、深いところには波長の長い赤い光のみが届く傾向がある。つまり、水深の深いところに棲む集団では、青い光を感受するSWSの機能は重要ではなくなってしまう。

 Gタンパク質はGTP結合タンパク質ともよばれ、GTPと結合することで活性化される。GTPを加水分解する性質をもっており、結合しているGTPがGDPに加水分解されると自身が不活性化される。受容体からの信号を中継するものは三量体(α、β、γサブユニット)として存在している。

 神経伝達物質は、放出された後、即座に分解されなければ迅速な伝達を成し得ない。したがって、こういった分解酵素の存在は、ATPが実際にその部位で神経伝達物質として働いていることの傍証となる。

 セロトニンは生体内に存在するモノアミンの一種であり、神経系では神経伝達物質として機能する。生体内のセロトニンの大部分(〜95%)は腸管に存在しており、神経系に存在するものは割合としては小さい。神経系では中脳の縫線核という部位のニューロンで産生され、情動機能等に関係しており、セロトニンの再取り込み阻害剤には抗鬱薬の作用がある。味蕾に存在するセロトニンはそれらとは別の働きをもっていると考えられる。

 迷走神経には感覚性の線維と運動性の線維の両方が含まれており、ここでの迷走感覚神経とはその中の感覚性の要素のみを指す。

 神経細胞(ニューロン)で、突起状の構造(軸索や樹状突起)以外の、核の周辺部の構造を細胞体という。

 ある細胞が放出するリガンドが、その細胞自身の受容体に働くことを自己分泌という。近傍の細胞の場合は傍分泌と呼ぶ。近隣の同じ性質をもった細胞に作用する場合と、自分自身に働く場合を合わせて、自己・傍分泌と呼ぶことが多い。哺乳類のキスペプチンニューロンは、キスペプチン以外に放出するニューロキニンB、ダイノルフィンと呼ばれるペプチドが、キスペプチンニューロン自身に作用することで、アクセルとブレーキのように働き、そのタイムラグでキスペプチンの放出を間歇的に引き起こす。これが前述のGnRHパルスを生み出しているとされている。

 市場に出ている子持ち昆布の中には、ニシン以外の魚(タラの仲間など)を用いて加工されているものもある。また、本物のニシンの卵の場合も、自然に海藻に産みつけられた卵はもっとまばらなので、あのようにびっしりと卵が並んで食べ応えのある子持ち昆布は人為的に作られているようだ。

 タンパク質の一次構造を形成する際にアミノ酸間に形成されるペプチド結合ではなく、側鎖にあるアミノ基とカルボキシル基の間に形成されるペプチド結合のこと。

 2-⑴で述べたように魚類の卵膜の別名は“コリオン”である。将来コリオンになるタンパク質のため、“材料”の意味をもつ“-genin”をつけて、コリオジェニンと呼ばれている。

 遺伝子のうち、半数体ゲノムにつき1コピー(体細胞では2コピー)しかない遺伝子以外のもの。

 共通祖先から生じたいくつかの遺伝子のうち、異なる生物種において類似または相同な機能をもつ遺伝子同士のこと。たとえば、ヘモグロビン、ミオグロビン、サイトグロビンなどは共通祖先から由来するグロビン遺伝子ファミリーであり、ヒトもマウスもこれらの遺伝子をもつが、このうちヒトのヘモグロビン遺伝子とマウスのヘモグロビン遺伝子はオーソログの関係にあるといえる。

 遺伝子ファミリーの中には、突然変異などによって機能を失ってしまうものがある。例えば、変異によって翻訳の途中にストップコドンが入ったり、プロモーターの欠損による転写不能や、転写後のプロセッシングに関与する配列の欠如による成熟mRNAの形成不全などがある。このように、配列の痕跡は残っており、どの遺伝子ファミリーに属するかは明らかだが、機能的でない遺伝子を偽遺伝子(Pseudogene)という。

 魚類では毎年数百の新種記載があり、2018年現在において硬骨魚類の現生種の記載数は3万をこえる。

 栄養リボンという邦訳は、山岸宏『比較生殖学』(東海大学出版会、1995年)による。

 第8章で触れられているデンキウナギなどは、長い身体の大部分が発電器官になっており、肛門の位置が同じように著しく前方に位置する。

 酵素活性は同じであるが、アミノ酸配列の違いによって性質の異なる酵素タンパク質。タンパク質の電気泳動度の差異から、その支配遺伝子座における遺伝子型の差異を検出できる。

 生物相の分布境界線で、この線を挟んで動植物相が大きく変化する。この線の西側が東洋区、東側がオーストラリア区とされる。ウォーレスとウェーバーがそれぞれ異なる境界線を提唱した。スラウェシ島やティモール島は両者の境界線の間に位置する。

 個体や系統を識別する上で目印となるDNA配列のこと。系統間で塩基配列が異なる領域があれば、そこをDNAマーカーとして利用できる。

 ゲノムDNAを制限酵素で切断し、100〜200kbの断片を細菌人工染色体(BAC)ベクターに組み込んでクローン化したもの。大きな領域の物理地図や塩基配列決定に必要とされてきた。

 DNAマーカーや既知のクローンを用いて、配列が一部重なり合うクローンを同定する作業を繰り返し、目的遺伝子近傍のクローンコンティグを作成する方法。

 ミュラー管とは哺乳類の発生過程で将来卵管になる管で、オスではこのホルモンの働きによって退縮する。しかし、真骨魚類にミュラー管はなく、別の機能をもつと考えられる。

 メダカ博士こと山本時男博士は、1953年d-rR系統(オスが緋色、メスが白色の限定遺伝をもとに育成作出された系統、X染色体上に潜性(劣性)のr遺伝子、Y染色体状に顕性(優性)のR遺伝子をもつ、体色により遺伝的な性の判別が可能)の孵化直後から性ホルモンを経口投与して性の人為的転換に成功した。すなわちXrXrでもアンドロゲン投与によりオスとなり、正常メスXrXrと交配して、メスメダカばかりを生んだ。XrYRもエストロゲン投与によりメスに性転換し、正常のオスXrYRと交配した。性ホルモンによる性転換が多くの研究者から示されていたが、山本博士によって初めて遺伝的な性と性ホルモンによる性転換の関連が明らかにされた。コラム⑧も参照。

 コ・オプション(co-option)、遺伝子の使い回し。既存の遺伝子が新たな機能を担うようになること。

 非同義置換よりも大きな影響を与えるのがフレームシフトである。3の単位で塩基は読まれていくが、もし、3の倍数以外の挿入/欠失が起こった場合は、その後の配列が全て読み枠がズレてしまい、その挿入/欠失より後(C末端側)ではまったく異なるタンパク質ができてしまう。