第1章 脳の研究史

Kappers, A., Huber, C.C., Crosby, C., Cornelius, U., Elizabeth, C., ed. (1967) The comparative anatomy of the nervous system of vertebrates including man, Hafner New York.

Bullock, T.H., Horridge, G.A. (1965) Structure and function in the nervous systems of invertebrates. Vol. II. London: Freeman and Company.

José, M., Martín-Durán, Kevin Pang, Aina Børve, Henrike Semmler Lê, Anlaug Furu, Johanna Taylor Cannon, Ulf Jondelius & Andreas Hejnol.  (2018)Convergent evolution of bilaterian nerve cords. Nature volume 553, 45–50 (DOI: 10.1038/nature 25030)

Kaas, J.H. ed. (2016) Evolution of nervous systems, Academic press Oxford.

Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A., Knowles-Barley, S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T.R., et al. (2015) Saturated Reconstruction of a Volume of Neocortex. Cell, 162, 648-661.

Livet, J. et al. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56-62 .

Nieuwenhuys, R., TenDonkelaar, H.J., Nicholson, C., ed. (1997) The central nervous system of vertebrates, Springer-Verlag Berlin Heidelberg.

Pfenning, A.R., Hara, E., Whitney, O., Rivas, M.V., Wang, R., Roulhac, P.L., Howard, J.T., Wirthlin, M., Lovell, P.V., Ganapathy, G., et al. (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds, Science, 346, 1256846.

Schmidt-Rhaesa, A.S., Harzsch, G. Purschke (eds.)(2015) Structure and Evolution of Invertebrate Nervous Systems, Oxford University Press, Oxford.

第2章 脳の起源

Arendt, D., Benito-Gutierrez, E., Brunet T. and Marlow, H. (2015) Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philosophical Transactions of the Royal Society B 370: 20150286.

Arendt, D., (2018) Animal Evolution: Convergent Nerve Cords? Current Biology, 28: R225-R227.

Chapman, J.A., Kirkness, E.F., Simakov, O., Hampson, S.E., Mitros, T., Weinmaier, T., Rattei, T., Balasubramanian, P.G., Borman, J., Busam, J.D., Disbennett, K., Pfannkoch, C., Sumin, N., Sutton, G.G., Viswanathan, L.D., Walenz, B., Goodstein, D.M., Hellsten, U., Kawashima, T., Prochnik, S.E., Putnam, N.H., Shu, S., Blumberg, B., Dana, C.E., Gee, L., Kibler, D.F., Law, L., Lindgens, D., Martinez, D.E., Peng, J., Wigge, P.A., Bertulat, B., Guder, C., Nakamura, Y., Özbek, S., Watanabe, H., Khalturin, K., Hemmrich, G., Franke, A., Augustin, R., Fraune, S., Hayakawa, E., Hayakawa, S., Hirose, M., Hwang, J.S., Ikeo, K., Nishimiya-Fujisawa, C., Ogura, A., Takahashi, T., Steinmetz, P.R., Zhang, X., Aufschnaiter, R., Eder, M.K., Gorny, A.K., Salvenmoser, W., Heimberg, A.M., Wheeler, B.M., Peterson, K.J., Böttger, A., Tischler, P., Wolf, A., Gojobori, T., Remington, K.A., Strausberg, R.L., Venter, J.C., Technau, U., Hobmayer, B., Bosch, T.C., Holstein, T.W., Fujisawa, T., Bode, H.R., David, C.N., Rokhsar, D.S., Steele, R.E., (2010) The dynamic genome of Hydra. Nature, 592-596, 464.

Genikhovich, G., Fried P., Prünster, M.M., Schinko, J.B., Gilles, A.F., Fredman D., Meier, K., Iber, D. & Technau, U., (2015) Axis Patterning by BMPs: Cnidarian Network Reveals Evolutionary Constraints, Cell Reports, pii: S2211-1247 (15) 00181-3.

Hirose, M, Obuchi, M, Hirose, E. & Reimer, J.D., (2011) Timing of spawning and early development of Palythoa tuberculosa (Anthozoa, Zoantharia, Sphenopidae) in Okinawa, Japan, The Biological Bulletin,  220 (1): 23-31.

Holstein, T. W., Watanabe, H. & Özbek, S., (2011) Signaling pathways and axis formation in the lower metazoa, Current Topics in Developmental Biology, 137-177, 97.

Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H.A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M. Q. & Holstein, T. W. (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433(7022): 156-60.

Martín-Durán, J.M., Pang, K., Børve, A., Lê H.S., Furu, A., Cannon J.T., Jondelius, U. & Hejnol, A., (2018) Convergent evolution of bilaterian nerve cords, Nature, 553, 45-50.

Nielsen, C., (2017) Evolution of deuterostomy – and origin of the chordates, Biological Reviews, 92, 316-325.

Schmidt-Rhaesa, A., Harzsch, S. & Purschke, G., (2016) Structure and Evolution of Invertebrate Nervous Systems, Oxford University Press.

Sinigaglia, C., Busengdal, H., Leclère L., Technau, U. & Rentzsch, F., (2013) The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian, PLoS Biology, 11(2): e1001488.

Tosches, M.A. & Arendt, D., (2013) The bilaterian forebrain: an evolutionary chimaera, Current Opinion in Neurobiology, 23, 1080-1089.

Watanabe, H. Back, (2017) Through Time: How Cnidarians and Basal Metazoans Shed Light on Ancient Nervous Systems, In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design, Diversity and Commonality in Animals, Springer, 45-75, Chapter 3.

Watanabe, H., Kuhn, A., Fushiki, M., Agata, K., Özbek, S., Fujisawa, T. & Holstein, T.W., (2014) Sequential actions of β-Catenin and Bmp pattern the oral nerve net in Nematostella vectensis. Nature Communications, 5: 5536.

Watanabe, H., Schmidt, H.A., Kuhn, A., Höger, S.K., Kocagöz, Y., Laumann-Lipp, N., Özbek, S. & Holstein, T.W., (2014) Nodal signalling determines biradial asymmetry in Hydra. Nature, 112-115, 515.

第3章 脳の再生と集中神経系の起源

Agata, K., Soejima, Y., Kato, K., Kobayashi, C., Umesono, Y. and Watanabe, K. (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers, Zoolog Sci 15 (3): 433-440. (DOI: 10.2108/zsj.15.433)

Cebria, F., Kobayashi, C., Umesono, Y., Nakazawa, M., Mineta, K., Ikeo, K., Gojobori, T., Itoh, M., Taira, M., Sanchez Alvarado, A. and Agata, K. (2002) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians, Nature 419 (6907): 620-624. (DOI: 10.1038/nature01042)

Inoue, T. (2017) Functional Specification of a Primitive Bilaterian Brain in Planarians, In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design, Diversity and Commonality in Animals, Springer,  79-100.

Inoue, T., Hoshino, H., Yamashita, T., Shimoyama, S. and Agata, K. (2015) Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function, Zoological Lett 1 (1): 7. (DOI: 10.1186/s40851-014-0010-z)

Kobayashi, K., Koyanagi, R., Matsumoto, M. and Hoshi, M. (1999) Switching from asexual to sexual reproduction in the planarian Dugesia ryukyuensis, Invert Reprod Develop 36 (1-3): 153-158. (DOI: 10.1080/07924259.1999.9652692)

McConnell, J.V. (1962) Memory transfer through cannibalism in planarians, J Neuropsychiat 3 (Suppl, 1): S42.

Shibata, N., Rouhana, L. and Agata, K. (2010) Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians, Dev Growth Differ 52(1): 27-41. (DOI: 10.1111/j.1440-169X.2009.01155.x)

Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A. and Boncinelli, E. (1992) Nested expression domains of four homeobox genes in developing rostral brain, Nature 358(6388): 687-690. (DOI: 10.1038/358687a0)

Thompson, R. and McConnell, J.V. (1955) Classical conditioning in the planarian, Dugesia dorotocephala, J Comp Physiol Psychol 48(1): 65-68.

Umesono, Y., Tasaki, J., Nishimura, Y., Hrouda, M., Kawaguchi, E., Yazawa, S., Nishimura, O., Hosoda, K., Inoue, T. and Agata, K. (2013) The molecular logic for planarian regeneration along the anterior-posterior axis, Nature 500(7460): 73-76. (DOI: 10.1038/nature12359)

Umesono, Y., Watanabe, K. and Agata, K. (1999) Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes, Dev Genes Evol 209 (1): 31-39. (DOI: 10.1007/s004270050224)

阿形清和、土橋とし子 (2009)『切っても切ってもプラナリア』 岩波書店

手代木渉、渡辺憲二 (1998)『プラナリアの形態分化—基礎から遺伝子まで』共立出版

第4章 小型でハイスペックな脳の獲得

Ai, H., Kai, K., Kumaraswamy, A., Ikeno, H., Wachtler, T., (2017) Interneurons in the honeybee primary auditory center responding to waggle dance-like vibration pulses, Journal of Neuroscience 37, 10624-10635.

Asahina, K. (2017) Neuromodulation and strategic action choice in drosophila aggression, Annual review of neuroscience 40, 51-75.

Borst, A., Helmstaedter, M. (2015) Common circuit design in fly and mammalian motion vision, Nature Neuroscience 18, 1067-1076.

Boyan, G., Reichert, H., Hirth, F. (2003) Commissure formation in the embryonic insect brain, Arthropod structure & development, 32, 61-77.

Galizia, C.G., Eisenhardt, D., Giurfa, M. (2011) Honeybee neurobiology and behavior: a tribute to Randolf Menzel, Springer Science & Business Media.

Hansson, B.S., Anton, S. (2000) Function and morphology of the antennal lobe: new developments, Annual review of entomology 45, 203-231.

Ishikawa, Y., Aonuma, H., Miura, T. (2008) Soldier-specific modification of the mandibular motor neurons in termites, PLoS One 3, e2617.

Ishikawa, Y., Aonuma, H., Sasaki, K., Miura, T. (2016) Tyraminergic and octopaminergic modulation of defensive behavior in termite soldier, PloS one 11, e0154230.

Ishikawa, Y., Kamikouchi, A. (2016) Auditory system of fruit flies. Hearing research 338, 1-8.

Ito, K, et al., (2014) A Systematic Nomenclature for the Insect Brain. (https://www.dx.doi.org/10.1016/j.neuron. 2013.12.017)

Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A. (2014) A systematic nomenclature for the insect brain. Neuron 81, 755-765.

Kaneko, K., Suenami, S., Kubo, T. (2016) Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel ‘middle-type’Kenyon cells, Zoological letters 2, 14.

Menzel, R, Giurfa, M. (2001) Cognitive architecture of a mini-brain: the honeybee, Trends in cognitive sciences 5, 62-71.

Owald, D, Waddell, S. (2015) Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila, Current opinion in neurobiology 35, 178-184.

Oya, S., Kohno, H., Kainoh, Y., Ono, M., Kubo, T. (2017) Increased complexity of mushroom body Kenyon cell subtypes in the brain is associated with behavioral evolution in hymenopteran insects, Scientific reports 7,13785.

Pereda, A.E. (2014) Electrical synapses and their functional interactions with chemical synapses, Nature Reviews Neuroscience 15, 250.

Ramdya, P., Benton, R. (2010) Evolving olfactory systems on the fly, Trends in genetics 26, 307-316.

Sanes, J.R., Zipursky, S.L. (2010) Design principles of insect and vertebrate visual systems. Neuron 66, 15-36.

Siegel, R.W., Hall, J.C. (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila, Proceedings of the National Academy of Sciences 76, 3430-3434.

Tanaka, R., Higuchi, T., Kohatsu, S., Sato, K., Yamamoto, D. (2017) Optogenetic activation of the fruitless-labeled circuitry in Drosophila subobscura males induces mating motor acts, Journal of Neuroscience 37, 11662-11674.

Tsubouchi, A., Yano, T., Yokoyama, T.K., Murtin, C., Otsuna, H., Ito, K. (2017) Topological and modality-specific representation of somatosensory information in the fly brain, Science 358, 615-623.

Yager, D.D. (1999) Structure, development, and evolution of insect auditory systems, Microsc Res Tech. Dec 15;47: 380-400. Epub 1999/12/22.

Yamamoto, D., Kohatsu, S. (2017) What does the fruitless gene tell us about nature vs. nurture in the sex life of Drosophila? Fly 11, 139-147.

Yamamoto, D., Sato, K., Koganezawa, M. (2014) Neuroethology of male courtship in Drosophila: from the gene to behavior, J Comp Physiol A 200, 251-264.

石川由希(2016)「シロアリの社会性とそれを支える生理/神経機構」 『比較生理生化学』 33(4): 191-202.

久保健雄、上川内あづさ、竹内秀明、奥山輝大(2014)『動物行動の分子生物学』(新・生命科学シリーズ) 裳華房

スィーレイ、トーマス・D(大谷剛訳)(1989)『ミツバチの生態学—社会生活での適応とは何か 』(自然誌ライブラリー)文一総合出版


第5章 知能の普遍デザインとは何か

Albertin, C.B., Simakov, O., Mitros, T., Wang, Z.Y., Pungor, J.R., Edsinger-Gonzales, E., Brenner, S., Ragsdale, C.W., Rokhsar, D.S. (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 524, 220-224.

Alon, S., Garrett, S.C., Levanon, E.Y., Olson, S., Graveley, B.R., Rosenthal, J.J.C., Eisenberg, E. (2015) The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing, eLife, 4, p.2015

Appel, T.A. (1987) The Cuvier-Geoffrey Debate. French Biology in the Decades before Darwin, p.306 | 15 illus, Oxford University Press.

Buresi, A., Andouche, A., Navet, S., Bassaglia, Y., Bonnaud-Ponticelli, L. and Baratte, S. (2016) Nervous system development in cephalopods: how egg yolk-richness modifies the topology of the mediolateral patterning system. Dev. Biol 415, 143-156. (DOI: 10.1016/j.ydbio.2016.04.027)

Cuvier, G.(1830)Considerations sur les Mollusques, et en Particulier sur Ics Cepisalopodes. Aususles des Sciences Naturelles, vol. 19, p. 241-259.

Edelman, D.B., Bernard, J., BaarsAnil, K.Seth.(2005)Identifying hallmarks of consciousness in non-mammalian species. Consciousness and Cognition Volume 14, Issue 1, March 2005, Pages 169-187.

Garrett, S. and Rosenthal, J.J. (2012) RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 335, 848-851. (DOI:10.1126/science.1212795)

Kandel, E.R. (2006) In Search of Memory: The Emergence of a New Science of Mind, 1st Ed, W. W. Norton & Company.

Kocot, K.M., Cannon, J.T., Todt, C., et al., (2011) Phylogenomicsreveals deep molluscan relationships, Nature, 477 (7365), 452-456.

Lee, P. N., Callaerts, P., Couet, H.G., Martindale, M.Q. (2003) Ce- phalopod Hox genes and the origin of morphological novelties. Nature, 424, 1061-1065.

Liscovitch-Brauer, N., Alon, S., Hagit, T., Porath, Elstein, B., Unger, R., Ziv, T., Admon, A., Erez, Y., Levanon, Rosentha, J.J.C., et al. (2017) Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods, Cell, 169 (2), 191202. e11.

Marquis, F. (1989) Die Embryonalentwicklung des Nervensystem von Octopus vulgaris Lam. (Cephalopoda, Octopoda), eine histologische Analyse, Verhandl Naturf Ges Basel 99, 23-75.

Shigeno, S. (2017) Brain Evolution as an Information Flow Designer: The Ground Architecture for Biological and Artificial General Intelligence, In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design, Diversity and Commonality in Animals, Springer.

Shigeno. S., Takenori, S., Boletzky, S.V. (2010) The origins of cephalopod body plans: A geometrical and developmental basis for the evolution of vertebrate-like organ systems. In Tanabe, K., Shigeta, Y., Sasaki, T., Hirano, H., eds, Cephalopods – Present and Past, Tokyo: Tokai University Press. p.23-34.

Shigeno, S., Ragsdale, C.W. (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities, J. Comp. Neurol, 523, 1297-1317. (DOI:10.1002/cne.23755)

Shigeno, S., Parnaik, R., Albertin, C., Ragsdale, C. (2015) Evidence for a cordal, not ganglionic, pattern of cephalopod brain neurogenesis. Zool. Lett., 1, p.26.

Shigeno, S., Andrews, P., Ponte, G., Fiorito, G. (2018) Cephalopod brains: an overview of current knowledge to facilitate comparison with vertebrates. Front. Physiol., 9:952.

Smith, S.A., Wilson, N.G., Goetz, F.E., et al., (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools, Nature, 480 (7377), 364-367.

Tomarev, S.I., Callaerts, P., Kos, L., Zinovieva, r., Halder, G., Gehring, W.J. and Piatigorsky, J. (1997) Squid Pax6 and eye development, Proceedings of the National Academy of Science USA 94, 2421-2426.

Yoshida, M., Yura, Y. & Ogura, A. (2014) Cephalopod eye evolution was modulated by the acquisition of Pax-6 splicing variants, Scientific Reports 4, Article number: 4256. (DOI:10.1038/srep04256)

Zullo, L., Sumbre, G., Agnisola, C., Flash, T. and Hochner, B. (2009) Nonsomatotopic Organization of the Higher Motor Centers in Octopus, Current Biology 19, 1632-1636, Elsevier Ltd All rights reserved. (DOI 10.1016/j.cub.2009.07.067)

第6章 脊椎動物の脳の誕生前夜

Abitua, P.B., Gainous, T.B., Kaczmarczyk, A.N., Winchell, C.J., Hudson, C., Kamata, K., Nakagawa, M., Tsuda, M., Kusakabe, T.G., Levine, M. (2015) Nature. 524(7566): 462-465.

Albuixech-Crespo, B. (2017) PLoS Biol, 15(4): e2001573.

Barrington (1965) The biology of the Hemi- chordata and Protochordata, Edinburgh: Oliver & Boyd.

Berrill, N.J. (1955) The origin of the vertebrates, Oxford: Oxford University Press.

Cannon, J.T., Vellutini, B.C., Smith, J., Ronquist, F., Jondelius, U., Hejnol, A. (2016) Xenacoelomorpha is the sister group to Nephrozoa, Nature 530, 89-93.

De Robertis, E.M., Sasai, Y. (1996) A common plan for dorsoventral patterning in Bilateria, Nature 380(6569): 37-40.

Feinberg, T.E., Mallatt, J. (2013) The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago, Front Psychol. 4:667. doi: 10.3389/fpsyg.2013.00667. eCollection 2013.

Garstang, W. (1928) Quarterly Journal of Microscopic Science 72: 51-87.

Garstang, W. (1894) Zoologischer Anzeiger 17, 122-125.

Geoffroy Saint-Hilaire, E. (1822) Mém, du Mus, Hist. Nat. 9, 89-119.

Goodrich, E.S. (1917) ‘Proboscis pores’ in craniates vertebrates, a suggestion concerning the premandibular somites and hypophysis, Quarterly Journal of Microscopical Science 62: 539-553.

Holland, L.Z., Carvalho, J.E., Escriva, H., Laudet, V., Schubert, M., Shimeld, M.S. and Jr-Kai Yu (2013) Evolution of bilaterian central nervous systems: a single origin? EvoDevo, 4:27

Imai, J.H. and Meinertzhagen, I.A. (2007) Neurons of the ascidian larval nervous system in Ciona intestinal, J Comp Neurol 20: 501(3): 316-334.   

Jackman, W.R., Langeland, J.A., Kimmel, C.B. (2000) islet reveals segmentation in the Amphioxus hindbrain homolog, Dev. Biol., 220: 16-26.

Katsuyama, Y., Wada, S. and Saiga, H. (1996). Homeobox genes exhibitevolutionary conserved regionalization in central nervous system of anascidian larva. Zool. Sci. 13, 479-482.

Lacalli, T.C. (2004) Sensory Systems in Amphioxus: A Window on the Ancestral Chordate Condition, Brain Behav Evol 64, 148-162.

Lacalli, T.C. (2008) Basic features of the ancestral chordate brain: a protochordate perspective, Brain Res Bull. 75(2-4): 319-323.

Nomaksteinsky, M., Röttinger, E., Dufour, H.D., Chettouh, Z., Lowe, C.J., Martindale, M. Q., Brunet, J.-F. (2009) Centralization of the deuterostome nervous system predates chordates. Curr. Biol. 19, 1264-1269.

Ohtsuka, Y., Matsumoto, J., Katsuyama, Y., Okamura, Y. (2014) Nodal signaling regulates specification of ascidian peripheral neurons through control of the BMP signal, Development 141(20): 3889-3899.

Pani, A.M., Mullarkey, E.E., Aronowicz, J., Assimacopoulos, S., Grove, E.A. and Lowe, C.J.  (2012) Nature 483(7389): 289–294.

Philippe, H., Brinkmann, H., Copley, R.R., Moroz, L.L., Nakano, H., Poustka, A.J., Wallberg, A., Peterson, K.J., Telford, M.J. (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella, Nature 470, 255-258

Greg, W., Rouse, N., Wilson, G., Jose, I., Carvajal & Robert, C. Vrijenhoek  (2016) New deep-sea species of Xenoturbella and the position of Xenacoelomorpha, Nature 530, 94-97.

Satoh, N., Rokhsar, D. and Nishikawa, T. (2014).  Proceedings of the Royal Society Biological Science 2811794: 20141729.

Wada, S. , Katsuyama, Y., Saiga, H. (1999) Anteroposterior patterning of the epidermis by inductive influences from the vegetal hemisphere cells in the ascidian embryo, Development 126(22): 4955-4963.

第7章 脊椎動物の脳の起源

Bruce, L.L. (2007) Evolution of Nervous Systems (Kaas, J. H., Bullock, T.  H. ed.), Academic Press, 125-156.

Butler, A.B., Hodos, W. (2005) Comparative vertebate neuroanatomy Evolution and adaptation, 2nd Ed, New Jerjey: Wiley-interscience.

Butts, T., Modrell, M.S., Baker, C.V., Wingate, R.J. (2014) The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish, Evol Dev 16: 92-100.

Crish, S.D., Comer, C.M., Marasco, P.D., Catania, K.C. (2003) Somatosensation in the superior colliculus of the star-nosed mole, J Comp Neurol 464: 415-425.

Czech-Damal, N.U., Liebschner, A., Miersch, L., Klauer, G., Hanke, F.D., Marshall, C., Dehnhardt, G., Hanke, W. (2012) Electroreception in the Guiana dolphin (Sotalia guianensis), Proc Biol Sci 279: 663-668.

Davis, S.P., Finarelli, J.A., Coates, M.I. (2012) Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes, Nature 486: 247-250.

Dupret, V., Sanchez, S., Goujet, D., Tafforeau, P., Ahlberg, P.E. (2014) A primitive placoderm sheds light on the origin of the jawed vertebrate face, Nature 507: 500-503.

Erzurumlu, R.S., Murakami, Y., Rijli, F.M. (2010) Mapping the face in the somatosensory brainstem, Nat Rev Neurosci 11: 252-263.

Ferran, J.L., Sanchez-Arrones, L., Sandoval, J.E., Puelles, L. (2007) A model of early molecular regionalization in the chicken embryonic pretectum, J Comp Neurol 505, 379-403.

Flanagan, J.G. (2006) Neural map specification by gradients. Curr Opi Neurobiol 16, 59-66.

Janvier, P. (2002) Early vertebrates, Oxford: Oxford University Press.

Lumsden, A., Keynes, R. (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424-428.

Marin, F., Puelles, L. (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei, Eur J Neurosci 7, 1714-1738.

McCoy, V.E., Saupe, E.E., Lamsdell, J.C., Tarhan, L.G., McMahon, S., Lidgard, S., Mayer, P., Whalen, C.D., Soriano, C., Finney, L., Vogt, S., Clark, E.G., Anderson, R.P., Petermann, H., Locatelli, E.R., Briggs, D.E. (2016) The ‘Tully monster’ is a vertebrate. Nature.

Medina, L., Abellán, A. (2009) Development and evolution of the pallium, Semin Cell Dev Biol 20(6): 698-711.

Mehta, T.K., Ravi, V., Yamasaki, S., Lee, A.P., Lian, M.M., Tay, B.H., Tohari, S., Yanai, S., Tay, A., Brenner, S., Venkatesh, B. (2013) Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci U S A 110, 16044-16049.

Moy-Thomas, J. A. and Miles, R.S. (1971). Palaeozoic Fishes (2d ed.). Chapman and Hall, Ltd., London.

Mueller, T. (2012) What is the Thalamus in Zebrafish? Front Neurosci 6, 1-14.

Murakami, Y., Ogasawara, M., Sugahara, F., Hirano, S., Satoh, N., Kuratani, S. (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates, Development 128, 3521-3531.

Nieuwenhuys, R. (1967) Comparative anatomy of the cerebellum, Prog Brain Res 25, 1-93.

Nieuwenhuys, R. (1997) The central nervous system of vertebrates (Nieuwenhuys, R., TenDonkelaar, H. J., Nicholson, C., ed.), Springer-Verlag Berlin Heidelberg.

Pani, A.M., Mullarkey. E.E., Aronowicz. J., Assimacopoulos. S., Grove. E.A., Lowe, C.J. (2012) Ancient deuterostome origins of vertebrate brain signalling centres. Nature, 483: 289-294.

Pombal, M.A., Megias, M., Bardet, S.M., Puelles, L. (2009) New and old thoughts on the segmental organization of the forebrain in lampreys, Brain Behav Evol 74, 7-19.

Puelles, L., Rubenstein, J.L. (2003) Forebrain gene expression domains and the evolving prosomeric model, Trends Neurosci 26, 469-476.

Puelles, L., Rubenstein, J.L. (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model, Front Neuroanat, 9:27. (doi: 10.3389/fnana.2015.00027. eCollection 2015. PubMed PMID: 25852489; PubMed Central PMCID: PMC4365718.)

Rubenstein, J.L., Martinez, S., Shimamura, K., Puelles. L. (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578-580.

Shu, D.G., Morris, S.C., Han, J., Zhang, Z.F., Yasui, K., Janvier, P., Chen, L., Zhang, X.L., Liu, J.N., Li, Y., Liu, H.Q. (2003) Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421: 526-529.

Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B., Grillner, S. (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection, Curr Biol 21: 1081-1091.

Sugahara, F., Pascual-Anaya, J., Oisi, Y., Kuraku, S., Aota, S., Adachi, N., Takagi, W., Hirai, T., Sato, N., Murakami, Y., Kuratani, S. (2016)Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain, Nature, 531(7592): 97-100.

Sugahara, F., Murakami, Y., Pascual-Anaya, J., Kuratani, S. (2017) Reconstructing the ancestral vertebrate brain, Dev Growth Differ, 59 (4): 163-174.

Suzuki, D.G., Murakami, Y., Escriva, H., Wada, H. (2015) A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center. J Comp Neurol 523, 251-261.

Suryanarayana, S.M., Robertson, B., Wallén, P., Grillner, S. (2017) The Lamprey Pallium Provides a Blueprint of the Mammalian Layered Cortex, Curr Biol 27(21): 3264-3277. e5.

Tomer, R., Denes, A. S., Tessmar-Raible, K., Arendt, D. (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142: 800-809.


ローマ−、A.S/パーソンズ、 T.S(1983)(平光厲司訳)『脊椎動物のからだ』法政大学出版局

第8章 水生に最適化した脳の多様化

Ito, H., Ishikawa, Y., Yoshimoto, M., Yamamoto, N. (2007) Diversity of brain morphology in teleosts: brain and ecological niche, Brain, Behavior and Evolution, 69: 76-86.

Yamamoto, N. (2017) Adaptive Radiation and Vertebrate Brain Diversity: Cases of Teleosts, In: Shigeno, S., Murakami, Y., Nomura, T. (eds)Brain Evolution by Design, Diversity and Commonality in Animals, Springer,  253-271.






第9章 脳進化の分水嶺

Carroll, R.L. (1998) Vertebrate paleontology and evolution. W.H. Freeman and Company.

Nomura, T., Murakami, Y., Gotoh, H., Ono, K. (2014) Reconstruction of ancestral brains: exploring the evolutionary process of encephalization in amniotes. Neurosci Res 86, 25-36.

Nomura, T., Yamashita, W., Gotoh, H., Ono, K. (2018) Species-specific mechanisms of neuron subtype specification reveal evolutionary plasticity of amniote brain development, Cell Report 22(12), 3142-3152.

Nomura, T., Kawaguchi, M., Ono, K., Murakami, Y. (2013) Reptiles: a new model for brain evo-devo research, J Exp Zool B Mol Dev Evol 320(2), 57-73.

Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S., Rubenstein, J.L.  (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1, J Comp Neurol 424(3), 409-438.

Striedter, G.F. (2005) Principle of brain evolution. Sinauer associates.

Yamashita, W., Takahashi, M., Kikkawa, T., Gotoh, H., Osumi, N., Ono, K., Nomura, T. (2018) Conserved and divergent functions of Pax6 underlie species-specific neurogenic patterns in the developing amniote brain, Development 145(8) (DOI:10.1242/dev.159764).

Suzuki, I., K. Kawasaki, T. Gojobori, T. Hirata, T. (2012) The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium, Dev Cell 22(4), 863-870.


村上安則『脳の進化形態学』共立出版、 2015年

Nieuwenhuys, R. (1997) The central nervous system of vertebrates (Nieuwenhuys, R., TenDonkelaar, H. J., Nicholson, C., ed.), Springer-Verlag Berlin Heidelberg.

Witmer L. M., Chatterjee, S., Franzosa, J., Rowe, T. (2003) Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature 425: 950-953.

Witton, M. (2013) Pterosaurs. Princeton University Press, New Jersey.


第10章 もうひとつの高次脳システムの出現

Clayton, N.S. & Dickinson, A. (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274.

Ditz, H.M. & Nieder, A. (2015) Neurons selective to the number of visual items in the corvid songbird endbrain, Proc. Natl. Acad. Sci. USA. 112, 7827-7832.

Jarvis, E.D., Güntürkün, O., Bruce, L. et al. (2005a) Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience 6, 151-159.

Kalenscher, T., Windmann, S., Rose, J., Diekamp, B., Güntürkün, O. & Colombo, M. (2005) Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Current Biology 15, 594-602.

Nishizawa, K., Izawa, E-I. & Watanabe, S. (2011) Neural-activity mapping of memory-based dominance in the crow: neural networks integrating individual discrimination and social behaviour control. Neuroscience 197, 307-319.

Nomura, T., Gotoh, H. & Ono, K. (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nature Communication 4, 2206.

Nomura, T. & Izawa, E-I. (2017) Avian brains: insights from development, behaviors and evolution. Development, Growth, & Differentiation 59, 244-257.

第11章 広範な適応拡散を可能にした大脳皮質の獲得

Balaram, P., Kaas, J.H. (2014) Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front Neuroanat 8(81) (DOI.org/10.3389/fnana2014.00081)

Krubitzer, L., Kahn, D.M. (2003) Nature versus nurture revised: an old idea with a new twist, Prog Neurobiol 70(1), 33-52.

Luzzati, F. (2015) A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory developmental program, Front Neuroci 9, 162.

McConnell S., Kaznowski, C.E. (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254(5029), 282-285.

Nomura, T., Takahashi, M., Hara, Y., Osumi, N. (2008) Patterns of neurogenesis and amplitude of reelin expression are essential for making a mammalian-type cortex, PLos One (DOI.org/10.1371/journal.pone.0001454)

Nomura, T., Murakami, Y., Gotoh, H., Ono, K. (2014) Reconstruction of ancestral brains: exploring the evolutionary process of encephalization in amniotes. Neurosci Res 86, 25-36.

Ogawa, M., Miyata, T., Nakajima K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., Mikoshiba, K. (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons, Neuron 14(5), 899-912.

Rudolph, M., Pelletier, J.G., Pare, D., Destexhe, A. (2005) Characerization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo, J Neurophsiol 94, 2805-2821.

Shen, Q., Wang, Y., Dimos, J.T., Fasano, C.A., Phoenix, T.N. et al. (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9(6), 743-751.

Tabata, H., Nakajima, K. (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex, J Neurosci 23(31), 9996-10001.

Tanaka, D.H., Oiwa, R., Sasaki, E., Nakajima, K. (2011) Changes in cortical interneuron migration contribute to the evolution of the neocortex. Proc Natl Acad Sci U S A. 108(19), 8015-8020.

Toma, K., Hanashima, C. (2015) Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex, Front Neurosci 9, 274. (DOI:10.3389/fnins.2015.00274.

大隅典子『脳の誕生 発生・発達・進化の謎を解く』ちくま書房、2017年


平沢達也「鳥類に至る系統における呼吸器の進化」『科学 特集・恐竜の進化とその時代』 vol. 80 no.11、2010年11月号

第12章 水中生活への挑戦

Butti, C., Raghanti, M.A., Sherwood, C.C., Hof, P.R. (2011) The neocortex of cetaceans: cytoarchitecture and comparison with other aquatic and terrestrial species, Ann NY Acad Sci.; 1225:47-58. (DOI: 10.1111/j.1749-6632.2011.05980.x. Review. PubMed PMID: 21534992.)

Cozzi, B., Huggenberger, S., Oelschlager, H. (2017) Anatomy of dorphins Insights into body structure and function, Academic press.

Kishida, T., Thewissen, J., Hayakawa, T., Imai, H., Agata, K., (2015)Aquatic adaptation andthe evolution of smell and taste in whales, Zoological Lett.1:9. (DOI: 10.1186/s40851-014-0002-z. eCollection 2015. PubMed PMID: 26605054; PubMed Central PMCID: PMC4604112.)

Krubitzer, L., Kahn, D.M. (2003) Nature versus nurture revisited: an old idea with a new twist, Prog Neurobiol, 70(1): 33-52. Review. (PubMed PMID: 12927333.)

Oelschläger, H.H., Kemp, B. (1998) Ontogenesis of the sperm whale brain, J Comp Neurol, 399(2): 210-28. (PubMed PMID: 9721904.)

O’Leary, D.D., Chou, S.J., Sahara, S. (2007) Area patterning of the mammalian cortex, Neuron 56(2): 252-269.

Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., Okada, N. (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates, Nature, 388 (6643): 666-70. (PubMed PMID: 9262399.)

村上安則『脳の進化形態学』共立出版、 2015年

第13章 脳進化、その特殊化の極致

Boyd, J.L., Skove, S.L., Rouanet, J.P., Pilaz, L.J., Belpler, T., Gordan, R., Wray, G.A., Silver, D.L. (2015) Human-chimpanzee differences in FDZ8 enhancer alter cell-cycle dynamics in the developing neocortex, Curr Biol 25(6), 772-779.

Callaway, E. (2011) Ancient DNA reveals secrets of human history, Nature 476, 136-137.

Charrier, C., Joshi, K., Coutinbo-Budd, J., Kim, J.E., Lambert, N, de Marchena, J., Jin, W.L., Vanderhaeghen, P., Ghosh, A., Sessa, T., Polleux, F. (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation, Cell 194(4), 923-935.

DeCasien, A.R., Williams, S.A., Higham, J.P. (2017) Primate brain size is predecited by diet but not sociality. Nat Ecol Evol 1(5): 0112.

Dyer, M.A., Martins, R., da Silva Filho, M., Muniz, J.A., Silveira, L.C., Cepko, C.L., Finlay, B.L. (2009) Developmental sources of conservation and variation in the evolution of the primate eye, Proc Natl Acad Sci U S A 106(22), 8963-8968.

Enard, W., Gehre, S., Hammerschmidt, K., Hölter, S.M., et al. (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in vivo, Cell 137(5), 961-971.

Kornack, D. R., Rakic, P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci U S A 95(3), 1242-1246.

Lui, J.H., Hansen, D.V., Kriegstein, A.R. (2011) Development and evolution of the human neocortex, Cell 146(1), 18-36.


ジンマー、カール/エムレン、ダグラス・J(更科功、石川牧子、国友良樹訳) 『進化の教科書』(BLUE BACKS)講談社、2016年

ペッツィンガー、ジェネビーブ・ボン(櫻井祐子訳)『最古の文字なのか?—氷河期の洞窟に残された32の記号の謎を解く』文芸春秋刊 2016年

ペーボ、スヴァンテ(野中香方子訳)『ネアンデルタール人は私たちと交配した』文芸春秋刊、 2015年










細胞の生体膜(細胞膜や内膜など)にある膜貫通タンパク質の一種で、特定のイオンを選択的に通過させる孔をつくるものを総称してチャネルと呼ぶ。筒状の構造をしていて、イオンチャネルタンパク質が刺激を受けると筒の孔が開き、ナトリウムやカルシウムなどのイオンを通過させることで、細胞膜で厳密に区切られた細胞の内外のイオンの行き来を制御している。刺激の受け方は種類によって多様で、cGMPが結合すると筒の穴が開くものをcGMP依存性イオンチャネルと呼ぶ。TRPチャネルも複数のファミリーからなるイオンチャネルの一群であり、非選択性の陽イオンチャネルである。発見された際に用いられた活性化因子の頭文字や構造的特徴から、A (Ankyrin), C (canonical), M (melastatin), ML (mucolipin), N (no mechanoreceptor), P (polycystin), V(vanilloid)の7つのサブファミリーに分類されている。TRPは、細胞内や細胞外の様々な刺激によって活性化してセンサーとして働いたり、シグナルを変換したり増幅したりするトランスデューサーとしての機能も併せ持つ。温度センサーやトウガラシに含まれるカプサイシンのセンサーとしても機能していることが知られている。













1. Sato, T. (1986) A brood parasitic catfish of mouthbrooding cichlid fishes in Lake Tanganyika. Nature 323: 58-59.

2. Taborsky, M. et al. (1981) Helpers in fish. Behav. Ecol. Sociobiol. 8: 143–145.

3. Hori, M. (1993) Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260: 216-219.

4. Meyer, A. et al. (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550-553.

5. Salzburger, W. et al. (2005) Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5: 17.

6. Verheyen, E. et al. (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325-329.

7. Seehausen, O. et al. (2003) Nuclear markers reveal unexpected genetic variation and a Congolese-Nilotic origin of the Lake Victoria cichlid species flock. Proc. Biol. Sci. 270: 129-137.

8. Meier, J.I. et al. (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8: 14363.

9. Joyce, D. A. et al. (2005) An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435: 90-95.

10. Kocher, T. D. et al. (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol. Phylogenet. Evol. 2:158-165.

31. Janvier, P. (2015) Facts and fancies about early fossil chordates and vertebrates. Nature, 520(7548), 483.




















 sexual conflict。ある形質が片方の性にとっては有利だが、もう片方の性にとっては不利な場合にオスメス間で生じる対立。





   発生初期の胚の一部の細胞群から作られ、生殖細胞を含む様々な組織に分化可能な性質(多能性)を有する細胞株。英語名(embryonic stem cells)の頭文字をとって、ES細胞と呼ばれることも多い。



 Francis Crickが1958年に提唱した、遺伝情報がDNA→(転写)→mRNA→(翻訳)→タンパク質、という流れで伝わるという概念のこと。分子生物学の基本となる極めて重要な概念である。





 SWS = short wave sensitive opsin、つまり短波長の光に感受性をもつオプシンのサブタイプ。


























008年9月15日に、アメリカ合衆国の投資銀行であるリーマン・ブラザーズ・ホールディングス(Lehman Brothers Holdings Inc.)が経営破綻したことに端を発して、連鎖的に世界規模の金融危機が発生した事象を総括的によぶ通称

通称ブレグジット(英語: Brexit)とは、イギリスが欧州連合(EU)から離脱すること