遺伝子・進化または世界史の本を扱う出版社です

『スポーツがつくったアジア』詳細目次と試し読み

序章の冒頭部分が読める「試し読み」はこちらから

刊行に寄せて
推薦のことば
日本語版序
序 章

第1章 筋肉的キリスト教と西洋の「文明化の使命:エルウッド・S・ブラウンと極東大会の創設

筋肉的キリスト教、YMCA、アメリカ人とアジア人の相互理解
大会の起源:マニラYMCA体育主事としてのエルウッド・ブラウンの活動と経験
東洋全体にアマチュアスポーツを推進する:キリスト教的国際主義の道具としての極東大会
慣習と価値体系を近代化する:極東大会、キリスト教的平等主義、「プロテスタント的職業倫理」
協力と部分的抵抗:大会に対する中国人、フィリピン人、日本人の初期の反応
初期の会場と式典
トロフィー、メダル、アジアの近代化の構想
評価

第2章 一九二〇年代から一九三〇年代の極東大会と西アジア大会:「アジア人の、アジア人による、アジア人のための大会」
一九二〇年代の東アジアと南アジアにおける政治状況の変化

スポーツを通じた汎アジアへの願望Ⅰ:中国の反植民地ナショナリズム、日本の国際主義、アメリカYMCAの撤退(一九二一~一九二五年)
スポーツを通じた汎アジアへの願望Ⅱ:「中華民族の覚醒」の未来像と第八回極東大会(一九二七年)におけるアジア人の協力
スポーツを通じた汎アジアへの願望Ⅲ:第九回極東大会(一九三〇年)におけるインドの参加、さらなる地域統合の構想、その文化的、地理的限界
スポーツを通じた汎アジアへの願望Ⅳ:「極東」選手権競技大会の終焉(一九三四年)
スポーツを通じた汎アジアへの願望Ⅴ:インドのスポーツと西アジア大会(一九三四年)の構想
近代化、メディア、大量の観客
進歩した会場と式典
トロフィーとメダル:大会のアジア化とオリンピック化
女子競技の創設
評価

第3章 スポーツを通じたネルーのアジア建設:第一回アジア大会、脱植民地化、国際的平和、近代化、発展(一九五一年三月四日~一一日)

一九五一年のインド
インドにおけるスポーツと大会の中心的主催者
アジア関係会議をスポーツ大会に変える:アジア競技連盟の創設
ネルーの汎アジア主義:アジア再統合のメッセージ
デリーの最初の競技場
第一回アジア大会とアジア競技連盟のシンボル
式典のデザイン
「アジアのルネサンス」を伝える失敗
評価

第4章 「自由世界」に属する「自由国家」:フィリピンの独立、曖昧な民主主義、第二回アジア大会(一九五四年五月一~九日)
一九五四年のフィリピン

第二回アジア大会の主催者
アジアの「自由世界」を大会に参加させる
民主主義、平和、「自由世界」
公式の式典:「自由世界」に属する「自由国家」
大会のシンボル:「自由世界」に属する「自由国家」
諸事件、曖昧な民主主義、フィリピンアマチュア競技連盟への厳しい批判
「フィリピン的自由」をアジアに伝達する
評価

第5章 「我々にオリンピックを与えたまえ」:平和的国際主義、「新生」日本、オリンピック水準の達成、第三回アジア大会
(一九五八年五月二四日~六月一日)

一九五八年の日本
第三回アジア大会の主催者
平和、アマチュア精神、その他いろいろ:汎アジア的言説の色鮮やかな寄せ集め
アジアで最も発展した国と一九六四年オリンピックの申請
オリンピック準備のために東京を作る:インフラ基盤の整備とアジア大会
オリンピックに準じた聖火リレー
文化国家としての戦後日本と「オリンピズム」の強力な支援者
アジアのメディアセンターとしての日本
評価

第6章 インドネシアを非同盟アジアの灯台に変える:スカルノ政権、第四回アジア大会、帝国主義と新植民地主義に対する闘争(一九六二年八月二四日~九月四日)

一九六二年のインドネシア
インドネシアにおけるスポーツと大会の中心的主催者
非同盟アジアのためにインドネシアを近代化する
地域建設の失敗Ⅰ:インドネシアの非同盟アジア
地域建設の失敗Ⅱ:平等主義的国際主義、反西洋的国際主義、怒れる群衆、新興国競技大会の創設
「開発の一〇年」を構築する:インドネシアのインフラとネイションのブランド化
公式の式典と娯楽プログラムに見える独立インドネシアの国家建設
日本に追いつく:開発のためのテレビ
評価

第7章 国王、軍、タイの発展:第五、六回アジア大会の連続開催(一九六六年一二月九日~二〇日、一九七〇年)

タイ(一九六六~一九七〇年)
タイのスポーツとアジア大会連続開催の決定
スポーツと観光産業の発展
スポーツ施設とホテルの建設
国王が大会を祝福する:聖火リレー
国王とアジア:公式の式典と娯楽のプログラム
国王と大会のシンボル
国王を人々の前に:メディアの発展とベトナム戦争
評価

第8章 イランとインド洋地域計画:大ペルシア帝国、石油による富、第七回アジア大会(一九七四年九月一日~一六日)

一九七四年のイラン
イランにおけるスポーツと大会の中心的主催者
アジア連合の建設:インド洋地域の中心としてのイラン
中国、「アジアの連帯」、反・新植民地国際主義の新しい波
西洋アマチュアスポーツの理想なきイランの近代化と発展
大国ペルシアのモニュメント建設
公式の式典:王室と帝国の再生
大ペルシア帝国を展示する
大国ペルシアの再生を宣伝する
評価

終 章

大会の主催者
汎アジア主義とナショナリズム
近代化、発展、ネイションのブランド化

PAGETOP
Copyright © 一色出版 2017 All Rights Reserved.
     

シェイクスピア、ビートルズの生誕の地イングランドは、イギリス諸島にある、スコットランドとウェールズと国境を接した国です。テムズ川沿いにある首都ロンドンには国会議事堂のビッグベン、11 世紀に建てられたロンドン塔があります。多文化が共存する、芸術とビジネスの中心地でもあります。その他にも、マンチェスター、バーミンガム、リヴァプール、ブリストル、大学が集うオックスフォードやケンブリッジといった大都市があります。

 

脳の中にある空洞のこと。脳脊髄液で満たされている。脊髄にあるものは中心管と呼ばれる。

神経堤細胞は脊椎動物の発生時に見られる神経管に隣接した組織。頭部では神経、骨、軟骨、甲状腺、眼、結合組織などの一部に分化する。

ミエリン鞘は髄鞘とも呼ばれ、軸索に巻き付いて絶縁体として働く構造である。これにより神経パルスはミエリン鞘の間隙を跳躍的に伝わる(跳躍伝導)ことで神経伝達が高速になる。ミエリン鞘は末梢神経系の神経ではシュワン細胞、中枢神経系ではオリゴデンドロサイトから構成される

様々な動物種間で塩基配列やアミノ酸配列を比較することによって、類似性や相違を明らかにする手法。この解析によって動物種間の近縁関係や進化の過程を予測することが可能になる。

細胞の生体膜(細胞膜や内膜など)にある膜貫通タンパク質の一種で、特定のイオンを選択的に通過させる孔をつくるものを総称してチャネルと呼ぶ。筒状の構造をしていて、イオンチャネルタンパク質が刺激を受けると筒の孔が開き、ナトリウムやカルシウムなどのイオンを通過させることで、細胞膜で厳密に区切られた細胞の内外のイオンの行き来を制御している。刺激の受け方は種類によって多様で、cGMPが結合すると筒の穴が開くものをcGMP依存性イオンチャネルと呼ぶ。TRPチャネルも複数のファミリーからなるイオンチャネルの一群であり、非選択性の陽イオンチャネルである。発見された際に用いられた活性化因子の頭文字や構造的特徴から、A (Ankyrin), C (canonical), M (melastatin), ML (mucolipin), N (no mechanoreceptor), P (polycystin), V(vanilloid)の7つのサブファミリーに分類されている。TRPは、細胞内や細胞外の様々な刺激によって活性化してセンサーとして働いたり、シグナルを変換したり増幅したりするトランスデューサーとしての機能も併せ持つ。温度センサーやトウガラシに含まれるカプサイシンのセンサーとしても機能していることが知られている。

任意の遺伝子の転写産物(mRNA)の相同な2本鎖RNAを人工的に合成し生物体内に導入することで、2本鎖RNAが相同部分を切断して遺伝子の発現を抑制する手法。2006年には、この手法の功績者がノーベル生理・医学賞を受賞している

発生過程で神経管を裏打ちする中胚葉組織であり、頭索類・尾索類では背骨のような支持組織としての役割を持つ。脊椎動物では運動ニューロンの分化を誘導するなど発生学的役割を持つ。

魚類に顕著にみられるのスリットで、哺乳類では発生の初期にはみられる。発生が進むと複雑な形態形成変化が起き、消失するが、外耳孔などは鰓裂の名残ということができる。

動物の初期発生において最初の形態形成運動として原腸陥入が起こる。原腸は消化管に分化する。この原腸陥入によって生じる「孔」を原口と呼ぶが、これが将来の動物の体の口になるのが前口動物であり、肛門になるのが後口動物である。半索動物、脊索動物は後口動物である。

ナマコの幼生のことをオーリクラリア幼生と呼ぶが、ウニのプルテウス幼生、ヒトデのビピンナリア幼生、ギボシムシのトルナリア幼生など、形態的共通性をもつ幼生全体をまとめてオーリクラリア(型)幼生と呼ぶ。今日ではディプルールラ型幼生という呼び方が広く使われている。この説はガルスタングが1928年に提唱した。その時代にはオーリクラリアという用語が使われたため(ディプリュールラ説ではなく)オーリクラリア説と呼ばれている。

*5 Hox遺伝子はショウジョウバエで発見されたホメオティック遺伝子の相同遺伝子である。無脊椎動物のゲノムには基本的に1つのHoxクラスターがあり、脊椎動物のゲノムには4つのHoxクラスターがある。Hoxb1は4つあるクラスターのうちのBクラスターに属する1番目のHox遺伝子という意味である。

脊椎動物胚の後脳領域には頭尾軸にそった分節性(等間隔の仕切り)がみられる。この各分節をロンボメアと呼び、図14に示すように7番目までは形態的に明瞭に観察できる。

脊椎動物のゲノムにはふたつか3つのIsletが存在する。Isletは脳幹(延髄、橋、中脳)の運動性脳神経核に発現して、運動ニューロンの分化に関与している。

感桿型では光刺激はホスホリパーゼCとイノシトールリン酸経路を活性化させる。繊毛型ではホスホジエステラーゼによる環状GMPの代謝が関与している。

これらは無顎類[むがくるい]と呼ぶこともあるが、これは系統学的には有効な名称ではない。

ちなみに軟骨魚類とカメ類は、脊椎動物の中でも遺伝子の進化速度が遅いことが知られている。

脳の外にある神経細胞の集塊を神経節、脳の中にあるものを神経核という。

菱脳には神経細胞とその軸索や樹状突起が網状になった網様体もあり、体の協調的な運動のために機能している。

これについてはふたつの半器官が融合して、ひとつになったとする考えがある。

この左右非対称性にはNodalという分子シグナルが関与している。

サメ類の終脳には前方に突き出した固有の領域があり、ここでは幾つかの遺伝子が層状に発現している。

気嚢による換気システムは獣脚類と呼ばれる恐竜から鳥類に至る系統で段階的に進化していったと考えられる。

このような特異な形態は胚発生期には見られず、生後に発達する。その過程は頭骨に見られる「テレスコーピング現象」と並行して進む。

哺乳類のIV層には顆粒細胞が多い。クジラ類はこれを欠くため「無顆粒性」と呼ばれる。

錐体外路系とは錐体路に属しない運動系路のことであり、錐体路が随意運動を司るのに対し、錐体外路系は随意運動の間に全身の筋肉をバランスよく動かして運動を円滑にする機能を持つ。

最近の研究ではフローレス人は10万〜5万年前まで生息していたと考えられている。

Kは環境収容力を表しており、限られた面積で確実に子孫を残すような繁殖の仕方である。

(注釈)遺伝子:タンパク質にコードされる遺伝情報を持つ塩基配列。狭義にはゲノムDNAのうち、mRNAに転写され、タンパク質になる部分。近年は、タンパク質に翻訳されないものの、機能を持つtRNA、rRNAやノンコーディングRNAなども遺伝子の中に含められるようになっている。本書では、特に注意書きのない限り、タンパク質の元となるmRNAになる部分を遺伝子、と呼ぶ。

では、その転写因子はなにが発現させるのか、というと、やはり別の転写因子である。卵の段階から、母親からmRNAとして最初期に発現する遺伝子は受け取っているので(母性RNA)、発生の最初期に使う転写因子を含む遺伝子群に関しては、転写の必要がないのである。その後、発生、分化が進んでいくと、それぞれの細胞集団に必要な転写因子が発現し、実際に機能を持つ遺伝子の転写を促す。

遺伝子は、核酸配列の連続した3塩基(コドンと呼ばれる)が1アミノ酸に対応し、順々にペプチド結合で繋げられてタンパク質となる。3つの塩基は43=64通りになるが、アミノ酸の数は20個、stopコドンを含めても21種類しかない。したがって、同じアミノ酸をコードするコドンは複数あり、たとえ変異が入ってもアミノ酸は変わらないことがある。これを同義置換と呼ぶ。一方で、変異によってコードするアミノ酸が変わってしまう置換を非同義置換と呼ぶ。

非同義置換よりも大きな影響を与えるのがフレームシフトである。3の単位で塩基は読まれていくが、もし、3の倍数以外の挿入/欠失が起こった場合は、その後の配列がすべて読み枠がズレてしまい、その挿入/欠失より後(C末端側)ではまったく異なるタンパク質ができてしまう。

その二つの系統が祖先を共通にした最後の年代。本章では、近年の分岐年代推定{Betancur, 2013 #922}を利用して作成された系統樹(当該文献のFig.1を参照)からおよその年代を読み取り、記入している。

世界で最も臭いと言われているシュールストレミングをネットで取り寄せて購入したとき、人々は逃げるどころか、わざわざ悶絶するために集まってきた。いい匂いの物を取り寄せても20人もの人数は集まるとは思えず、怖い物見たさという悪趣味な好奇心はたいしたものである。無論、取り寄せた私も棚上げするつもりはない。ちなみに、シュールストレミングはひとかけらをクラッカーの上に載せるくらいの食べ方なら悪くない気もする。

この二つの硬骨の作られ方について、3章に詳述があるので参照されたい。